Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.985
1.
Int J Mol Sci ; 25(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38732272

Lung branching morphogenesis relies on intricate epithelial-mesenchymal interactions and signaling networks. Still, the interplay between signaling and energy metabolism in shaping embryonic lung development remains unexplored. Retinoic acid (RA) signaling influences lung proximal-distal patterning and branching morphogenesis, but its role as a metabolic modulator is unknown. Hence, this study investigates how RA signaling affects the metabolic profile of lung branching. We performed ex vivo lung explant culture of embryonic chicken lungs treated with DMSO, 1 µM RA, or 10 µM BMS493. Extracellular metabolite consumption/production was evaluated by using 1H-NMR spectroscopy. Mitochondrial respiration and biogenesis were also analyzed. Proliferation was assessed using an EdU-based assay. The expression of crucial metabolic/signaling components was examined through Western blot, qPCR, and in situ hybridization. RA signaling stimulation redirects glucose towards pyruvate and succinate production rather than to alanine or lactate. Inhibition of RA signaling reduces lung branching, resulting in a cystic-like phenotype while promoting mitochondrial function. Here, RA signaling emerges as a regulator of tissue proliferation and lactate dehydrogenase expression. Furthermore, RA governs fatty acid metabolism through an AMPK-dependent mechanism. These findings underscore RA's pivotal role in shaping lung metabolism during branching morphogenesis, contributing to our understanding of lung development and cystic-related lung disorders.


Energy Metabolism , Lung , Morphogenesis , Signal Transduction , Tretinoin , Animals , Tretinoin/metabolism , Tretinoin/pharmacology , Lung/metabolism , Lung/drug effects , Lung/embryology , Energy Metabolism/drug effects , Morphogenesis/drug effects , Signal Transduction/drug effects , Chick Embryo , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Chickens
2.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653778

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Cell Differentiation , Gene Expression Regulation, Neoplastic , Neuroblastoma , SOXC Transcription Factors , Tretinoin , Neuroblastoma/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Tretinoin/pharmacology , Tretinoin/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Humans , Animals , Cell Line, Tumor , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Cell Lineage/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , CRISPR-Cas Systems , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics
3.
Biochem Biophys Res Commun ; 710: 149541, 2024 May 28.
Article En | MEDLINE | ID: mdl-38608490

For acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) is well established. However, the narrow application and tolerance development of ATRA remain to be improved. In this study, we investigated the effects of combinations of glycosylation inhibitors with ATRA to achieve better efficiency than ATRA alone. We found that the combination of fucosylation inhibitor 6-alkynylfucose (6AF) and ATRA had an additional effect on cell differentiation, as revealed by expression changes in two differentiation markers, CD11b and CD11c, and significant morphological changes in NB4 APL and HL-60 acute myeloid leukemia (AML) cells. In AAL lectin blot analyses, ATRA or 6AF alone could decrease fucosylation, while their combination decreased fucosylation more efficiently. To clarify the molecular mechanism for the 6AF effect on ATRA-induced differentiation, we performed microarray analyses using NB4 cells. In a pathway analysis using DAVID software, we found that the C-type lectin receptor (CLR) signaling pathway was enriched with high significance. In real-time PCR analyses using NB4 and HL-60 cells, FcεRIγ, CLEC6A, CLEC7A, CASP1, IL-1ß, and EGR3, as components of the CLR pathway, as well as CD45 and AKT3 were upregulated by 6AF in ATRA-induced differentiation. Taken together, the present findings suggest that the CLR signaling pathway is involved in the 6AF effect on ATRA-induced differentiation.


Leukemia, Promyelocytic, Acute , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Glycosylation , Tretinoin/pharmacology , Tretinoin/metabolism , Cell Differentiation , HL-60 Cells , Cell Line, Tumor
4.
PLoS One ; 19(4): e0301447, 2024.
Article En | MEDLINE | ID: mdl-38557762

Rexinoids are agonists of nuclear rexinoid X receptors (RXR) that heterodimerize with other nuclear receptors to regulate gene transcription. A number of selective RXR agonists have been developed for clinical use but their application has been hampered by the unwanted side effects associated with the use of rexinoids and a limited understanding of their mechanisms of action across different cell types. Our previous studies showed that treatment of organotypic human epidermis with the low toxicity UAB30 and UAB110 rexinoids resulted in increased steady-state levels of all-trans-retinoic acid (ATRA), the obligatory ligand of the RXR-RAR heterodimers. Here, we investigated the molecular mechanism underlying the increase in ATRA levels using a dominant negative RXRα that lacks the activation function 2 (AF-2) domain. The results demonstrated that overexpression of dnRXRα in human organotypic epidermis markedly reduced signaling by resident ATRA, suggesting the existence of endogenous RXR ligand, diminished the biological effects of UAB30 and UAB110 on epidermis morphology and gene expression, and nearly abolished the rexinoid-induced increase in ATRA levels. Global transcriptome analysis of dnRXRα-rafts in comparison to empty vector-transduced rafts showed that over 95% of the differentially expressed genes in rexinoid-treated rafts constitute direct or indirect ATRA-regulated genes. Thus, the biological effects of UAB30 and UAB110 are mediated through the AF-2 domain of RXRα with minimal side effects in human epidermis. As ATRA levels are known to be reduced in certain epithelial pathologies, treatment with UAB30 and UAB110 may represent a promising therapy for normalizing the endogenous ATRA concentration and signaling in epithelial tissues.


Furylfuramide , Tretinoin , Humans , Retinoid X Receptors/genetics , Retinoid X Receptors/agonists , Retinoid X Receptors/metabolism , Ligands , Tretinoin/pharmacology , Tretinoin/metabolism , Epidermis/metabolism , Receptors, Cytoplasmic and Nuclear
5.
Dev Cell ; 59(9): 1146-1158.e6, 2024 May 06.
Article En | MEDLINE | ID: mdl-38574734

Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.


Gene Expression Regulation, Developmental , Transcription Factor AP-2 , Transcription Factors , Animals , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Female , Embryo Implantation/genetics , Gene Regulatory Networks , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Embryonic Development/genetics , TEA Domain Transcription Factors/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Promoter Regions, Genetic/genetics , Tretinoin/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics
6.
J Cell Mol Med ; 28(7): e18205, 2024 Apr.
Article En | MEDLINE | ID: mdl-38506089

Retinoic acid (RA), a vitamin A derivative, is an effective cell differentiating factor which plays critical roles in neuronal differentiation induction and the production of neurotransmitters in neurons. However, the specific changes in phosphorylation levels and downstream signalling pathways associated with RA remain unclear. This study employed qualitative and quantitative phosphoproteomics approaches based on mass spectrometry to investigate the phosphorylation changes induced by RA in C17.2 neural stem cells (NSCs). Dimethyl labelling, in conjunction with TiO2 phosphopeptide enrichment, was utilized to profile the phosphoproteome of self-renewing and RA-induced differentiated cells in C17.2 NSCs. The results of our study revealed that, qualitatively, 230 and 14 phosphoproteins were exclusively identified in the self-renewal and RA-induced groups respectively. Quantitatively, we successfully identified and quantified 177 unique phosphoproteins, among which 70 exhibited differential phosphorylation levels. Analysis of conserved phosphorylation motifs demonstrated enrichment of motifs corresponding to cyclin-dependent kinase and MAPK in the RA-induced group. Additionally, through a comprehensive literature and database survey, we found that the differentially expressed proteins were associated with the Wnt/ß-catenin and Hippo signalling pathways. This work sheds light on the changes in phosphorylation levels induced by RA in C17.2 NSCs, thereby expanding our understanding of the molecular mechanisms underlying RA-induced neuronal differentiation.


Neural Stem Cells , Tretinoin , Tretinoin/pharmacology , Tretinoin/metabolism , Neural Stem Cells/metabolism , Neurons/metabolism , Cell Differentiation , Phosphoproteins/genetics , Phosphoproteins/metabolism
7.
Methods Mol Biol ; 2754: 521-532, 2024.
Article En | MEDLINE | ID: mdl-38512687

Pathological alterations of the neuronal Tau protein are characteristic for many neurodegenerative diseases, called tauopathies. To investigate the underlying mechanisms of tauopathies, human neuronal cell models are required to study Tau physiology and pathology in vitro. Primary rodent neurons are an often used model for studying Tau, but rodent Tau differs in sequence, splicing, and aggregation propensity, and rodent neuronal physiology cannot be compared to humans. Human-induced pluripotent stem cell (hiPSC)-derived neurons are expensive and time-consuming. Therefore, the human neuroblastoma SH-SY5Y cell line is a commonly used cell model in neuroscience as it combines convenient handling and low costs with the advantages of human-derived cells. Since naïve SH-SY5Y cells show little similarity to human neurons and almost no Tau expression, differentiation is necessary to obtain human-like neurons for studying Tau protein-related aspects of health and disease. As they express in principle all six Tau isoforms seen in the human brain, differentiated SH-SY5Y-derived neurons are suitable for investigating the human microtubule-associated protein Tau and, for example, its sorting and trafficking. Here, we describe and discuss a general cultivation procedure as well as four differentiation methods to obtain SH-SY5Y-derived neurons resembling noradrenergic, dopaminergic, and cholinergic properties, based on the treatment with retinoic acid (RA), brain-derived neurotrophic factor (BDNF), and 12-O-tetrade canoylphorbol-13-acetate (TPA). TPA and RA-/TPA-based protocols achieve differentiation efficiencies of 40-50% after 9 days of treatment. The highest differentiation efficiency (~75%) is accomplished by a combination of RA and BDNF; treatment only with RA is the most time-efficient method as ~50% differentiated cells can be obtained already after 7 days.


Neuroblastoma , Tauopathies , Humans , tau Proteins/genetics , tau Proteins/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cell Line, Tumor , Neuroblastoma/pathology , Neurons/metabolism , Cell Differentiation/physiology , Tretinoin/pharmacology , Tretinoin/metabolism , Tauopathies/metabolism
8.
Cell Rep ; 43(3): 113939, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38493476

Morphogens are important triggers for differentiation processes. Yet, downstream effectors that organize cell shape changes in response to morphogenic cues, such as retinoic acid, largely remain elusive. Additionally, derailed plasma membrane-derived signaling often is associated with cancer. We identify Ankrd26 as a critical player in cellular differentiation and as plasma membrane-localized protein able to self-associate and form clusters at the plasma membrane in response to retinoic acid. We show that Ankrd26 uses an N-terminal amphipathic structure for membrane binding and bending. Importantly, in an acute myeloid leukemia-associated Ankrd26 mutant, this critical structure was absent, and Ankrd26's membrane association and shaping abilities were impaired. In line with this, the mutation rendered Ankrd26 inactive in both gain-of-function and loss-of-function/rescue studies addressing retinoic acid/brain-derived neurotrophic factor (BDNF)-induced neuroblastoma differentiation. Our results highlight the importance and molecular details of Ankrd26-mediated organizational platforms for cellular differentiation at the plasma membrane and how impairment of these platforms leads to cancer-associated pathomechanisms involving these Ankrd26 properties.


Leukemia, Myeloid, Acute , Tretinoin , Humans , Cell Differentiation , Tretinoin/pharmacology , Tretinoin/metabolism , Signal Transduction , Cell Membrane/metabolism , Leukemia, Myeloid, Acute/metabolism
9.
Sci Rep ; 14(1): 7411, 2024 03 28.
Article En | MEDLINE | ID: mdl-38548913

Neurons are highly dependent on mitochondria to meet their bioenergetic needs and understanding the metabolic changes during the differentiation process is crucial in the neurodegeneration context. Several in vitro approaches have been developed to study neuronal differentiation and bioenergetic changes. The human SH-SY5Y cell line is a widely used cellular model and several differentiation protocols have been developed to induce a neuron-like phenotype including retinoic acid (RA) treatment. In this work we obtained a homogeneous functional population of neuron-like cells by a two-step differentiation protocol in which SH-SY5Y cells were treated with RA plus the mitotic inhibitor 2-deoxy-5-fluorouridine (FUdr). RA-FUdr treatment induced a neuronal phenotype characterized by increased expression of neuronal markers and electrical properties specific to excitable cells. In addition, the RA-FUdr differentiated cells showed an enrichment of long chain and unsaturated fatty acids (FA) in the acyl chain composition of cardiolipin (CL) and the bioenergetic analysis evidences a high coupled and maximal respiration associated with high mitochondrial ATP levels. Our results suggest that the observed high oxidative phosphorylation (OXPHOS) capacity may be related to the activation of the cyclic adenosine monophosphate (cAMP) pathway and the assembly of respiratory supercomplexes (SCs), highlighting the change in mitochondrial phenotype during neuronal differentiation.


Neuroblastoma , Tretinoin , Humans , Tretinoin/pharmacology , Tretinoin/metabolism , Floxuridine , Oxidative Phosphorylation , Cell Line, Tumor , Neuroblastoma/metabolism , Cell Differentiation
10.
Science ; 383(6687): eadi7342, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38452090

Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.


Adult Stem Cells , Cell Plasticity , Epidermis , Hair Follicle , Tretinoin , Wound Healing , Animals , Mice , Adult Stem Cells/cytology , Adult Stem Cells/physiology , Cell Lineage/drug effects , Cell Lineage/physiology , Cell Plasticity/drug effects , Cell Plasticity/physiology , Epidermis/drug effects , Epidermis/physiology , Hair Follicle/cytology , Hair Follicle/drug effects , Hair Follicle/physiology , Tretinoin/metabolism , Tretinoin/pharmacology , Wound Healing/drug effects , Wound Healing/physiology , Rejuvenation/physiology , Cell Culture Techniques , Neoplasms/pathology , Mice, Inbred C57BL
11.
Environ Pollut ; 347: 123775, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38503350

Decabromodiphenyl ether (BDE-209), a frequently used brominated flame retardant, readily enters the environment and is difficult to degrade with bioaccumulation. BDE-209 could cause male reproductive toxicity, but the regulatory functions of Sertoli cells-secreted factors remain uncertain. In present study, male mice were treated with 75 mg/kg BDE-209 and then stopped exposure for 50 days. Exogenous Glial cell line-derived neurotrophic factor (GDNF), a Sertoli cell-secreted factor, was injected into testes of mice treated with BDE-209 for 50 days to explore the role of GDNF in BDE-209-induced reproductive toxicity. The mouse spermatogonia cell line GC-1 spg was used in vitro to further verify regulatory effects of Sertoli cells-secreted factors on meiotic initiation. The results showed that BDE-209 inhibited expressions of the self-renewal pathway GFRα-1/RAS/ERK1/2 in spermatogonial stem cells (SSCs), and reduced expressions of spermatogonia proliferation-related pathway NRG3/ERBB4 and meiosis initiation factor Stra8. Furthermore, BDE-209 decreased the levels of both GDNF and retinoic acid (RA) secreted by Sertoli cells in testes. Importantly, the alterations of above indicators induced by BDE-209 did not recover after 50-day recovery period. After exogenous GDNF injection, the decreased expression of GFRα-1/RAS/ERK in SSCs was reversed. However, the level of RA and expressions of NRG3/ERBB4/Stra8 were not restored. The in vitro experimental results showed that exogenous RA reversed the reductions in NRG3/ERBB4/Stra8 and ameliorated inhibition of GC-1 spg cells proliferation induced by BDE-209. These results suggested that Sertoli cells-secreted factors play roles in regulating various stages of germ cell development. Specifically, BDE-209 affected the self-renewal of SSCs by decreasing GDNF secretion resulting in the inhibition of GFRα-1/RAS/ERK pathway; BDE-209 hindered the proliferation of spermatogonia and initiation of meiosis by inhibiting the secretion of RA and preventing RA from binding to RARα, resulting in the suppression of NRG3/ERBB4/Stra8 pathway. As a consequence, spermatogenesis was compromised, leading to persistent male reproductive toxicity.


Acetates , Glial Cell Line-Derived Neurotrophic Factor , Halogenated Diphenyl Ethers , Phenols , Sertoli Cells , Mice , Animals , Male , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Testis/metabolism , Spermatogonia , Spermatogenesis , Tretinoin/metabolism , Tretinoin/pharmacology
12.
Drug Metab Dispos ; 52(5): 442-454, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38485281

Hepatic stellate cells (HSCs) are the major site of vitamin A (retinol) esterification and subsequent storage as retinyl esters within lipid droplets. However, retinyl esters become depleted in many pathophysiological states, including acute and chronic liver injuries. Recently, using a liver slice culture system as a model of acute liver injury and fibrogenesis, a time-dependent increase and decrease in the apparent formation of the bioactive retinoid all-trans-retinoic acid (atRA) and retinyl palmitate was measured, respectively. This coincided with temporal changes in the gene expression of retinoid-metabolizing enzymes and binding proteins, that preceded HSC activation. However, the underlying mechanisms that promote early changes in retinoid metabolism remain unresolved. We hypothesized that LX-2 cells could be applied to investigate differences in quiescent and activated HSC retinoid metabolism. We demonstrate that the hypermetabolic state of activated stellate cells relative to quiescent stellate cells may be attributed to induction of STRA6, RBP4, and CYP26A1, thereby reducing intracellular concentrations of atRA. We further hypothesized that paracrine and autocrine cytokine signaling regulates HSC vitamin A metabolism in both quiescent and activated cells. In quiescent cells, tumor necrosis factor α dose-dependently downregulated LRAT and CRBP1 mRNA, with EC50 values of 30-50 pg/mL. Likewise, interleukin-1ß decreased LRAT and CRBP1 gene expression but with less potency. In activated stellate cells, multiple enzymes were downregulated, suggesting that the full effects of altered hepatic vitamin A metabolism in chronic conditions require both paracrine and autocrine signaling events. Further, this study suggests the potential for cell type-specific autocrine effects in hepatic retinoid signaling. SIGNIFICANCE STATEMENT: HSCs are the major site of vitamin A storage and important determinants of retinol metabolism during liver fibrogenesis. Here, two LX-2 culture methods were applied as models of hepatic retinoid metabolism to demonstrate the effects of activation status and dose-dependent cytokine exposure on the expression of genes involved in retinoid metabolism. This study suggests that compared to quiescent cells, activated HSCs are hypermetabolic and have reduced apparent formation of retinoic acid, which may alter downstream retinoic acid signaling.


Retinyl Esters , Vitamin A , Vitamin A/metabolism , Vitamin A/pharmacology , Interleukin-1beta/metabolism , Retinyl Esters/metabolism , Tumor Necrosis Factor-alpha/metabolism , Liver/metabolism , Retinoids/metabolism , Tretinoin/pharmacology , Tretinoin/metabolism
13.
Nucleic Acids Res ; 52(7): 3682-3701, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38321954

Retinoic acid (RA) is the ligand of RA receptors (RARs), transcription factors that bind to RA response elements. RA signaling is required for multiple processes during embryonic development, including body axis extension, hindbrain antero-posterior patterning and forelimb bud initiation. Although some RA target genes have been identified, little is known about the genome-wide effects of RA signaling during in vivo embryonic development. Here, we stimulate the RA pathway by treating zebrafish embryos with all-trans-RA (atRA) and use a combination of RNA-seq, ATAC-seq, ChIP-seq and HiChIP to gain insight into the molecular mechanisms by which exogenously induced RA signaling controls gene expression. We find that RA signaling is involved in anterior/posterior patterning, central nervous system development, and the transition from pluripotency to differentiation. AtRA treatment also alters chromatin accessibility during early development and promotes chromatin binding of RARαa and the RA targets Hoxb1b, Meis2b and Sox3, which cooperate in central nervous system development. Finally, we show that exogenous RA induces a rewiring of chromatin architecture, with alterations in chromatin 3D interactions involving target genes. Altogether, our findings identify genome-wide targets of RA signaling and provide a molecular mechanism by which developmental signaling pathways regulate target gene expression by altering chromatin topology.


Embryonic Development , Gene Expression Regulation, Developmental , Tretinoin , Animals , Chromatin/metabolism , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/drug effects , Embryonic Development/genetics , Embryonic Development/drug effects , Epigenome , Gene Expression Regulation, Developmental/drug effects , Signal Transduction/drug effects , Tretinoin/pharmacology , Tretinoin/metabolism , Zebrafish/genetics , Zebrafish/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
14.
Nat Commun ; 15(1): 1538, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38378737

Retinoic acid (RA) is involved in antero-posterior patterning of the chordate body axis and, in jawed vertebrates, has been shown to play a major role at multiple levels of the gene regulatory network (GRN) regulating hindbrain segmentation. Knowing when and how RA became coupled to the core hindbrain GRN is important for understanding how ancient signaling pathways and patterning genes can evolve and generate diversity. Hence, we investigated the link between RA signaling and hindbrain segmentation in the sea lamprey Petromyzon marinus, an important jawless vertebrate model providing clues to decipher ancestral vertebrate features. Combining genomics, gene expression, and functional analyses of major components involved in RA synthesis (Aldh1as) and degradation (Cyp26s), we demonstrate that RA signaling is coupled to hindbrain segmentation in lamprey. Thus, the link between RA signaling and hindbrain segmentation is a pan vertebrate feature of the hindbrain and likely evolved at the base of vertebrates.


Chordata , Petromyzon , Animals , Petromyzon/genetics , Tretinoin/metabolism , Vertebrates/genetics , Rhombencephalon/metabolism , Gene Expression Regulation, Developmental
15.
Cell Commun Signal ; 22(1): 127, 2024 02 15.
Article En | MEDLINE | ID: mdl-38360674

All-trans retinoic acid (ATRA) is the most relevant and functionally active metabolite of Vitamin-A. From a therapeutic standpoint, ATRA is the first example of pharmacological agent exerting its anti-tumor activity via a cell differentiating action. In the clinics, ATRA is used in the treatment of Acute Promyelocytic Leukemia, a rare form of myeloid leukemia with unprecedented therapeutic results. The extraordinary effectiveness of ATRA in the treatment of Acute Promyelocytic Leukemia patients has raised interest in evaluating the potential of this natural retinoid in the treatment of other types of neoplasias, with particular reference to solid tumors.The present article provides an overview of the available pre-clinical and clinical studies focussing on ATRA as a therapeutic agent in the context of breast cancer from a holistic point of view. In detail, we focus on the direct effects of ATRA in breast cancer cells as well as the underlying molecular mechanisms of action. In addition, we summarize the available information on the action exerted by ATRA on the breast cancer micro-environment, an emerging determinant of the progression and invasive behaviour of solid tumors. In particular we discuss the recent evidences of ATRA activity on the immune system. Finally, we analyse and discuss the results obtained with the few ATRA-based clinical trials conducted in the context of breast cancer.


Antineoplastic Agents , Breast Neoplasms , Leukemia, Promyelocytic, Acute , Humans , Female , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Breast Neoplasms/pathology , Tretinoin/pharmacology , Tretinoin/metabolism , Cell Line, Tumor , Cell Differentiation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Tumor Microenvironment
16.
J Autoimmun ; 144: 103174, 2024 04.
Article En | MEDLINE | ID: mdl-38377868

In many autoimmune diseases, autoantigen-specific Th17 cells play a pivotal role in disease pathogenesis. Th17 cells can transdifferentiate into other T cell subsets in inflammatory conditions, however, there have been no attempts to target Th17 cell plasticity using vaccines. We investigated if autoantigen-specific Th17 cells could be specifically targeted using a therapeutic vaccine approach, where antigen was formulated in all-trans retinoic acid (ATRA)-containing liposomes, permitting co-delivery of antigen and ATRA to the same target cell. Whilst ATRA was previously found to broadly reduce Th17 responses, we found that antigen formulated in ATRA-containing cationic liposomes only inhibited Th17 cells in an antigen-specific manner and not when combined with an irrelevant antigen. Furthermore, this approach shifted existing Th17 cells away from IL-17A expression and transcriptomic analysis of sorted Th17 lineage cells from IL-17 fate reporter mice revealed a shift of antigen-specific Th17 cells to exTh17 cells, expressing functional markers associated with T cell regulation and tolerance. In the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, vaccination with myelin-specific (MOG) antigen in ATRA-containing liposomes reduced Th17 responses and alleviated disease. This highlights the potential of therapeutic vaccination for changing the phenotype of existing Th17 cells in the context of immune mediated diseases.


Encephalomyelitis, Autoimmune, Experimental , Th17 Cells , Mice , Animals , Liposomes/metabolism , Tretinoin/pharmacology , Tretinoin/metabolism , Autoantigens/metabolism , Adjuvants, Immunologic , Immunization , Vaccination , Phenotype , Mice, Inbred C57BL , Th1 Cells
17.
Proc Natl Acad Sci U S A ; 121(7): e2311803121, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38330015

Chronic kidney disease (CKD) is characterized by a gradual loss of kidney function and affects ~13.4% of the global population. Progressive tubulointerstitial fibrosis, driven in part by proximal tubule (PT) damage, is a hallmark of late stages of CKD and contributes to the development of kidney failure, for which there are limited treatment options. Normal kidney development requires signaling by vitamin A (retinol), which is metabolized to retinoic acid (RA), an endogenous agonist for the RA receptors (RARα, ß, γ). RARα levels are decreased in a mouse model of diabetic nephropathy and restored with RA administration; additionally, RA treatment reduced fibrosis. We developed a mouse model in which a spatiotemporal (tamoxifen-inducible) deletion of RARα in kidney PT cells of adult mice causes mitochondrial dysfunction, massive PT injury, and apoptosis without the use of additional nephrotoxic substances. Long-term effects (3 to 4.5 mo) of RARα deletion include increased PT secretion of transforming growth factor ß1, inflammation, interstitial fibrosis, and decreased kidney function, all of which are major features of human CKD. Therefore, RARα's actions in PTs are crucial for PT homeostasis, and loss of RARα causes injury and a key CKD phenotype.


Kidney , Renal Insufficiency, Chronic , Retinoic Acid Receptor alpha , Animals , Humans , Mice , Disease Models, Animal , Fibrosis , Kidney/metabolism , Kidney Tubules, Proximal/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/prevention & control , Retinoic Acid Receptor alpha/genetics , Retinoic Acid Receptor alpha/metabolism , Tretinoin/pharmacology , Tretinoin/metabolism
18.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38338985

In the field of human in vitro fertilization (IVF), selecting the best oocyte for freezing or embryo for transfer remains an important focus of clinical practice. Although several techniques are and have been used for this goal, results have generally not been favorable and/or are invasive such that damage to some embryos occurs, resulting in a reduced number of healthy births. Therefore, the search continues for non-invasive oocyte and embryo quality markers that signal the development of high-quality embryos. Multiple studies indicate the important positive effects of retinoic acid (RA) on oocyte maturation and function. We previously showed that a high follicular fluid (FF) RA concentration at the time of oocyte retrieval in IVF protocols was associated with oocytes, giving rise to the highest quality embryos, and that cumulus granulosa cells (CGCs) are the primary source of follicle RA synthesis. Data also demonstrated that connexin-43 (Cx43), the main connexin that forms gap junctions in CGCs, is regulated by RA and that RA induces a rapid increase in gap junction communication. Here, we hypothesize that CGC RA plays a causal role in oocyte competency through its action on Cx43 and, as such, may serve as a biomarker of oocyte competence. Multiple studies have demonstrated the requirement for Cx43 in CGCs for the normal progression of folliculogenesis, and that the increased expression of this connexin is linked to the improved developmental competence of the oocyte. The data have shown that RA can up-regulate gap junction intercellular communication (GJIC) in the cumulus-oocyte complex via a non-genomic mechanism that results in the dephosphorylation of Cx43 and enhanced GJIC. Recognizing the positive role played by gap junctions in CGCs in oocyte development and the regulation of Cx43 by RA, the findings have highlighted the possibility that CGC RA levels may serve as a non-invasive indicator for selecting high-quality oocytes for IVF procedures. In addition, the data suggest that the manipulation of Cx43 with retinoid compounds could provide new pharmacological approaches to improve IVF outcomes in cases of failed implantation, recurrent miscarriage, or in certain diseases that are characterized by reduced fecundity, such as endometriosis.


Cumulus Cells , Tretinoin , Female , Humans , Cumulus Cells/metabolism , Tretinoin/pharmacology , Tretinoin/metabolism , Connexin 43/metabolism , Oocytes/metabolism , Fertilization in Vitro , Connexins/metabolism , In Vitro Oocyte Maturation Techniques
19.
PLoS Biol ; 22(1): e3002464, 2024 Jan.
Article En | MEDLINE | ID: mdl-38206904

Trichromacy is unique to primates among placental mammals, enabled by blue (short/S), green (medium/M), and red (long/L) cones. In humans, great apes, and Old World monkeys, cones make a poorly understood choice between M and L cone subtype fates. To determine mechanisms specifying M and L cones, we developed an approach to visualize expression of the highly similar M- and L-opsin mRNAs. M-opsin was observed before L-opsin expression during early human eye development, suggesting that M cones are generated before L cones. In adult human tissue, the early-developing central retina contained a mix of M and L cones compared to the late-developing peripheral region, which contained a high proportion of L cones. Retinoic acid (RA)-synthesizing enzymes are highly expressed early in retinal development. High RA signaling early was sufficient to promote M cone fate and suppress L cone fate in retinal organoids. Across a human population sample, natural variation in the ratios of M and L cone subtypes was associated with a noncoding polymorphism in the NR2F2 gene, a mediator of RA signaling. Our data suggest that RA promotes M cone fate early in development to generate the pattern of M and L cones across the human retina.


Placenta , Tretinoin , Pregnancy , Adult , Animals , Humans , Female , Tretinoin/metabolism , Placenta/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retina/metabolism , Opsins/metabolism , Rod Opsins/genetics , Primates , Mammals/metabolism
20.
J Nutr Biochem ; 126: 109589, 2024 Apr.
Article En | MEDLINE | ID: mdl-38295886

Lipophagy is defined as a lipolysis pathway that degrades lipid droplet (LD) via autophagy. All-trans retinoic acid (atRA), a metabolite of vitamin A, stimulates lipolysis through hormone-sensitive lipase and ß-oxidation. However, the regulation of lipolysis by atRA-induced autophagy in adipocytes remains unclear. In this study, we investigated the effect of atRA on autophagy in epididymal fat of mice and the molecular mechanisms of autophagy in 3T3-L1 adipocytes. Western blotting showed that atRA decreased the expression of p62, a cargo receptor for autophagic degradation, and increased the expression of the lipidated LC3B (LC3B-II), an autophagy marker, in epididymal fat. Next, we confirmed that atRA increased autophagic flux in differentiated 3T3-L1 cells using the GFP-LC3-RFP-LC3ΔG probe. Immunofluorescent staining revealed that the colocalization of LC3B with perilipin increased in differentiated 3T3-L1 cells treated with atRA. The knockdown of Atg5, an essential gene in autophagy induction, partly suppressed the atRA-induced release of non-esterified fatty acid (NEFA) from LDs in differentiated 3T3-L1 cells. atRA time-dependently elicited the phosphorylation of AMPK and Beclin1, autophagy-inducing factors, in mature 3T3-L1 adipocytes. Inversely, atRA decreased the protein expression of Rubicon, an autophagy repressor, in differentiated 3T3-L1 cells and epididymal fat. Interestingly, the expression of ALDH1A1, atRA-synthesizing enzymes, increased in epididymal fat with decreased protein expression of Rubicon in aged mice. These results suggest that atRA may partially induce lipolysis through lipophagy by activating the AMPK-Beclin1 signaling pathway in the adipocytes and increased atRA levels may contribute to decreased Rubicon expression in the epididymal fat of aged mice. (248/250 words).


AMP-Activated Protein Kinases , Signal Transduction , Mice , Animals , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Lipolysis , Tretinoin/pharmacology , Tretinoin/metabolism , Autophagy , Adipocytes , 3T3-L1 Cells
...